1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Adrianne Breen edited this page 2025-02-17 09:33:52 +07:00
This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.


Today, we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled versions ranging from 1.5 to 70 billion criteria to build, experiment, and responsibly scale your generative AI concepts on AWS.

In this post, we show how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to deploy the distilled versions of the models too.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language design (LLM) established by DeepSeek AI that uses reinforcement discovering to enhance thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. An essential distinguishing function is its reinforcement learning (RL) action, which was used to improve the model's actions beyond the basic pre-training and tweak procedure. By incorporating RL, DeepSeek-R1 can adapt better to user feedback and objectives, eventually boosting both importance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) approach, indicating it's geared up to break down intricate questions and reason through them in a detailed manner. This assisted reasoning procedure enables the model to produce more precise, transparent, and detailed answers. This model integrates RL-based fine-tuning with CoT capabilities, aiming to create structured actions while focusing on interpretability and user interaction. With its extensive abilities DeepSeek-R1 has actually recorded the market's attention as a flexible text-generation model that can be integrated into different workflows such as agents, sensible reasoning and data interpretation jobs.

DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture permits activation of 37 billion criteria, enabling effective reasoning by routing queries to the most pertinent specialist "clusters." This technique enables the design to concentrate on different problem domains while maintaining total performance. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge instance to deploy the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking capabilities of the main R1 design to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller, more effective designs to imitate the behavior and reasoning patterns of the larger DeepSeek-R1 design, utilizing it as a teacher design.

You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we advise releasing this model with guardrails in location. In this blog, we will utilize Amazon Bedrock Guardrails to introduce safeguards, avoid hazardous content, and assess models against key security criteria. At the time of writing this blog site, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop several guardrails tailored to various usage cases and use them to the DeepSeek-R1 design, enhancing user experiences and standardizing safety controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 design, you require access to an ml.p5e circumstances. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and confirm you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To request a limitation boost, create a limitation increase request and reach out to your account team.

Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For instructions, see Establish approvals to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails permits you to present safeguards, prevent hazardous content, and examine models against key safety criteria. You can execute security procedures for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to assess user inputs and model responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The general circulation includes the following steps: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, engel-und-waisen.de it's sent to the design for inference. After receiving the design's output, another guardrail check is used. If the output passes this last check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it took place at the input or output phase. The showcased in the following sections show inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:

1. On the Amazon Bedrock console, select Model brochure under Foundation designs in the navigation pane. At the time of writing this post, you can use the InvokeModel API to conjure up the design. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and pick the DeepSeek-R1 design.

The design detail page supplies necessary details about the model's capabilities, pricing structure, and application guidelines. You can discover detailed usage instructions, consisting of sample API calls and code bits for integration. The model supports various text generation tasks, consisting of content development, code generation, and question answering, utilizing its support discovering optimization and CoT thinking abilities. The page likewise includes implementation alternatives and licensing details to help you get going with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, select Deploy.

You will be prompted to configure the release details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of circumstances, get in a variety of instances (in between 1-100). 6. For example type, select your instance type. For optimal efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is recommended. Optionally, you can set up advanced security and facilities settings, including virtual private cloud (VPC) networking, service role consents, and higgledy-piggledy.xyz encryption settings. For the majority of use cases, the default settings will work well. However, for production deployments, you may desire to review these settings to align with your company's security and compliance requirements. 7. Choose Deploy to start utilizing the model.

When the release is total, you can evaluate DeepSeek-R1's abilities straight in the Amazon Bedrock play area. 8. Choose Open in play ground to access an interactive interface where you can experiment with various triggers and change design parameters like temperature and maximum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimal outcomes. For example, material for reasoning.

This is an outstanding method to check out the model's reasoning and text generation abilities before incorporating it into your applications. The play area supplies immediate feedback, helping you understand how the model responds to different inputs and letting you tweak your triggers for optimal outcomes.

You can rapidly evaluate the design in the play ground through the UI. However, to invoke the deployed model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to carry out inference utilizing a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually created the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime customer, configures inference criteria, and sends out a demand to produce text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML services that you can release with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your information, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart provides 2 convenient methods: utilizing the instinctive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's check out both approaches to assist you pick the approach that finest matches your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be triggered to create a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The design web browser shows available models, with details like the provider name and model abilities.

4. Search for DeepSeek-R1 to view the DeepSeek-R1 design card. Each model card shows essential details, including:

- Model name - Provider name

  • Task category (for example, Text Generation). Bedrock Ready badge (if relevant), suggesting that this design can be signed up with Amazon Bedrock, allowing you to utilize Amazon Bedrock APIs to conjure up the model

    5. Choose the design card to view the design details page.

    The design details page includes the following details:

    - The design name and company details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab includes important details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage standards

    Before you deploy the model, it's advised to evaluate the design details and license terms to validate compatibility with your usage case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, use the automatically created name or create a customized one.
  1. For Instance type ¸ select an instance type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, get in the number of circumstances (default: 1). Selecting appropriate circumstances types and counts is crucial for cost and efficiency optimization. Monitor your deployment to change these settings as needed.Under Inference type, Real-time inference is picked by default. This is enhanced for sustained traffic and low latency.
  3. Review all setups for accuracy. For this model, we strongly advise sticking to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to release the design.

    The implementation process can take several minutes to complete.

    When implementation is complete, your endpoint status will change to InService. At this moment, the model is all set to accept reasoning requests through the endpoint. You can keep an eye on the implementation development on the SageMaker console Endpoints page, which will show pertinent metrics and status details. When the deployment is complete, you can conjure up the model utilizing a SageMaker runtime customer and integrate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the needed AWS consents and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for reasoning programmatically. The code for deploying the design is supplied in the Github here. You can clone the note pad and range from SageMaker Studio.

    You can run extra requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail utilizing the Amazon Bedrock console or the API, and execute it as shown in the following code:

    Clean up

    To prevent unwanted charges, finish the actions in this section to clean up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you released the model using Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace releases.
  5. In the Managed releases section, locate the endpoint you desire to delete.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're deleting the appropriate release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you released will sustain expenses if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and release the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, wiki.vst.hs-furtwangen.de SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting started with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for wavedream.wiki Inference at AWS. He assists emerging generative AI business construct ingenious services using AWS services and sped up compute. Currently, he is concentrated on developing strategies for fine-tuning and optimizing the reasoning performance of large language models. In his totally free time, Vivek enjoys hiking, viewing motion pictures, and attempting different cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads product, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about developing solutions that help customers accelerate their AI journey and unlock organization value.